Combining Neural Network Voting Classifiers and Error Correcting Output Codes

نویسندگان

  • Friedrich Leisch
  • Kurt Hornik
چکیده

Papers published in this report series are preliminary versions of journal articles and not for quotations. Abstract We show that error correcting output codes (ECOC) can further improve the eeects of error dependent adaptive resampling methods such as arc-lh. In traditional one-inn coding, the distance between two binary class labels is rather small, whereas ECOC are chosen to maximize this distance. We compare one-inn and ECOC on a multiclass data set using standard MLPs and bagging and arcing voting committees.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Combining Neural Network Voting Classiiers and Error Correcting Output Codes

We show that error correcting output codes (ECOC) can further improve the eeects of error dependent adaptive resampling methods such as arc-lh. In traditional one-inn coding, the distance between two binary class labels is rather small, whereas ECOC are chosen to maximize this distance. We compare one-inn and ECOC on a multiclass data set using standard MLPs and bagging and arcing voting commit...

متن کامل

Using Two-Class Classifiers for Multiclass Classification

The generalization from two-class classification to multiclass classification is not straightforward for discriminants which are not based on density estimation. Simple combining methods use voting, but this has the drawback of inconsequent labelings and ties. More advanced methods map the discriminant outputs to approximate posterior probability estimates and combine these, while other methods...

متن کامل

Applying Multiple Complementary Neural Networks to Solve Multiclass Classification Problem

In this paper, a multiclass classification problem is solved using multiple complementary neural networks. Two techniques are applied to multiple complementary neural networks which are one-against-all and error correcting output codes. We experiment our proposed techniques using an extremely imbalance data set named glass from the UCI machine learning repository. It is found that the combinati...

متن کامل

An approach to fault detection and correction in design of systems using of Turbo ‎codes‎

We present an approach to design of fault tolerant computing systems. In this paper, a technique is employed that enable the combination of several codes, in order to obtain flexibility in the design of error correcting codes. Code combining techniques are very effective, which one of these codes are turbo codes. The Algorithm-based fault tolerance techniques that to detect errors rely on the c...

متن کامل

Optimizing Linear Discriminant Error Correcting Output Codes Using Particle Swarm Optimization

Error Correcting Output Codes reveal an efficient strategy in dealing with multi-class classification problems. According to this technique, a multi-class problem is decomposed into several binary ones. On these created sub-problems we apply binary classifiers and then, by combining the acquired solutions, we are able to solve the initial multiclass problem. In this paper we consider the optimi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1997